Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Int ; 101: 102890, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522781

RESUMO

We examined gelatinous zooplankton from off eastern Australia for lepocreadiid trematode metacercariae. From 221 specimens of 17 species of cnidarian medusae and 218 specimens of four species of ctenophores, infections were found in seven cnidarian and two ctenophore species. Metacercariae were distinguished using cox1 mtDNA, ITS2 rDNA and morphology. We identified three species of Prodistomum Linton, 1910 [P. keyam Bray & Cribb, 1996, P. orientale (Layman, 1930), and Prodistomum Type 3], two species of Opechona Looss, 1907 [O. kahawai Bray & Cribb, 2003 and O. cf. olssoni], and Cephalolepidapedon saba Yamaguti, 1970. Two species were found in cnidarians and ctenophores, three only in cnidarians, and one only in a ctenophore. Three Australian fishes were identified as definitive hosts; four species were collected from Scomber australasicus and one each from Arripis trutta and Monodactylus argenteus. Transmission of trematodes to these fishes by ingestion of gelatinous zooplankton is plausible given their mid-water feeding habits, although such predation is rarely reported. Combined morphological and molecular analyses of adult trematodes identified two cox1 types for C. saba, three cox1 types and species of Opechona, and six cox1 types and five species of Prodistomum of which only two are identified to species. All three genera are widely distributed geographically and have unresolved taxonomic issues. Levels of distinction between the recognised species varied dramatically for morphology, the three molecular markers, and host distribution. Phylogenetic analysis of 28S rDNA data extends previous findings that species of Opechona and Prodistomum do not form monophyletic clades.

2.
Parasitology ; 151(2): 168-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38037706

RESUMO

Geographical distribution plays a major role in our understanding of marine biodiversity. Some marine fish trematodes have been shown to have highly restricted geographical distributions, while some are known to occur over very wide ranges; however, very few of these wide distributions have been demonstrated genetically. Here, we analyse species of the genus Schikhobalotrema (Haplosplanchnidae) parasitizing beloniforms from the tropical west Pacific, the eastern Pacific and the Gulf of Mexico (GoM). We test the boundaries of these trematodes by integrating molecular and morphological data, host association, habitat of the hosts and geographical distribution, following a recently proposed and standardized delineation method for the recognition of marine trematode species. Based on the new collections, Schikhobalotrema huffmani is here synonymized with the type-species of the genus, Schikhobalotrema acutum; Sch. acutum is now considered to be widely distributed, from the GoM to the western Pacific. Additionally, we describe a new species, Schikhobalotrema minutum n. sp., from Strongylura notata and Strongylura marina (Belonidae) from La Carbonera coastal lagoon, northern Yucatán, GoM. We briefly discuss the role of host association and historical biogeography of the hosts as drivers of species diversification of Schikhobalotrema infecting beloniforms.


Assuntos
Beloniformes , Trematódeos , Animais , Golfo do México , Oceano Pacífico , Trematódeos/genética , Biodiversidade
3.
Int J Parasitol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977247

RESUMO

Pleustonic organisms form an important part of pelagic ecosystems by contributing to pelagic trophic chains and supporting connectivity between oceanic habitats. This study systematically analysed the trematode community harboured by pleustonic molluscs and cnidarians from offshore Queensland, Australia. Four mollusc and three cnidarian species were collected from beaches of North Stradbroke Island, Queensland. Two mollusc species and all three cnidarians harboured large numbers of hemiuroid metacercariae (Trematoda: Hemiuroidea). Eight taxa from four hemiuroid families (Accacoeliidae, Didymozoidae, Hemiuridae and Sclerodistomidae) were distinguished via molecular sequencing. Four of those taxa were identified to species. All trematode taxa except one didymozoid were shared by two or more host species; five species occurred in both gastropods and cnidarians. It is hypothesised that the life-cycles of these hemiuroids are highly plastic, involving multiple opportunistic pathways of metacercarial transmission to the definitive hosts. Transmission and the use of pleuston by hemiuroids likely varies with sea surface use and ontogenetic trophic shifts of apex predators. The small number of trematode species found in pleuston is consistent with significant ecological specificity, and the inference that other pelagic trematodes use alternative pathways of transmission that do not involve pleustonic organisms. Such pathways may involve i) pelagic hosts exclusively; ii) benthic or demersal hosts exclusively, consumed by apex predators during their dives; or iii) both benthic and pelagic hosts in transmission chains dependent on vertical migrations of prey. The influence of the connectivity of open-ocean ecosystems on parasite transmission is identified as an area in critical need of research.

4.
Int J Parasitol ; 53(11-12): 595-635, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37488048

RESUMO

Species of Transversotrema Witenberg, 1944 (Transversotrematidae) occupy a unique ecological niche for the Trematoda, living externally under the scales of their teleost hosts. Previous studies of the genus have been impeded partly by limited variation in ribosomal DNA sequence data between closely related species and partly by a lack of morphometrically informative characters. Here, we assess richness of the tropical Indo-west Pacific species through parallel phylogenetic and morphometric analyses, generating cytochrome c oxidase subunit 1 mitochondrial sequence data and morphometric data for hologenophore specimens from Australia, French Polynesia, Japan and Palau. These analyses demonstrate that molecular data provide the only reliable basis for species identification; host distribution, and to a lesser extent morphology, are useful for identifying just a few species of Transversotrema. We infer that a combination of morphological simplicity and infection site constraint has led to the group displaying exceptionally low morphological diversification. Phylogenetic analyses of the mitochondrial data broadly support previous systematic interpretations based on ribosomal data, but also demonstrate the presence of several morphologically and ecologically cryptic species. Ten new species are described, eight from the Great Barrier Reef, Australia (Transversotrema chrysallis n. sp., Transversotrema daphnidis n. sp., Transversotrema enceladi n. sp., Transversotrema hyperionis n. sp., Transversotrema iapeti n. sp., Transversotrema rheae n. sp., Transversotrema tethyos n. sp., and Transversotrema titanis n. sp.) and two from off Japan (Transversotrema methones n. sp. and Transversotrema panos n. sp.). There are now 26 Transversotrema species known from Australian marine fishes, making it the richest trematode genus for the fauna.


Assuntos
Trematódeos , Animais , Filogenia , Austrália , Peixes , DNA Ribossômico/genética
5.
Syst Parasitol ; 100(4): 363-379, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37133708

RESUMO

Integration of morphological and molecular approaches to species delineation has become an essential part of digenean trematode taxonomy, particularly when delimiting cryptic species. Here, we use an integrated approach to distinguish and describe two morphologically cryptic species of Hysterolecitha Linton, 1910 (Trematoda: Lecithasteridae) from fishes of Moreton Bay, Queensland, Australia. Morphological analyses of Hysterolecitha specimens from six fish species demonstrated a complete overlap in morphometric data with no reliable differences in their gross morphological characters that suggested the presence of more than one species. Distinctions in ITS2 rDNA and cox1 mtDNA sequence data for corresponding specimens suggested the presence of two forms. A principal component analysis on an imputed dataset showed clear separation between the two forms. These two forms are partially separated on the basis of their host's identity. Therefore, we describe two morphologically cryptic species: Hysterolecitha melae n. sp. from three species of Abudefduf Forsskål and one species of Parma Günther (Pomacentridae), with the Bengal sergeant, Abudefduf bengalensis (Bloch), as the type-host; and Hysterolecitha phisoni n. sp. from species of Pomacentridae (including A. bengalensis), Pomatomidae and Siganidae, with the black rabbitfish, Siganus fuscescens (Houttuyn), as the type-host.


Assuntos
Doenças dos Peixes , Perciformes , Trematódeos , Infecções por Trematódeos , Animais , Baías , Especificidade de Hospedeiro , Filogenia , Especificidade da Espécie , Austrália , Peixes
6.
Syst Parasitol ; 100(4): 381-413, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160818

RESUMO

We report nine species of the Schistorchiinae Yamaguti, 1942 (Apocreadiidae Skrjabin, 1942) from Indo-Pacific marine fishes. Molecular data (ITS2 and 28S rDNA and cox1 mtDNA) are provided for all species and the genus-level classification of the subfamily is revised. For Schistorchis Lühe, 1906, we report the type-species Sch. carneus Lühe, 1906 and Sch. skrjabini Parukhin, 1963. For Sphinteristomum Oshmarin, Mamaev & Parukhin, 1961 we report the type-species, Sph. acollum Oshmarin, Mamaev & Parukhin, 1961. We report and re-recognise Lobatotrema Manter, 1963, for the type and only species, L. aniferum Manter, 1963, previously a synonym of Sph. acollum. Lobatotrema aniferum is phylogenetically distant from, but morphologically similar to, Sph. acollum and Lobatotrema is recognised as a 'cryptic genus'. We propose Blendiella n. gen. for B. trigintatestis n. sp. and B. tridecimtestis n. sp. These species are broadly consistent with the present morphological concept of Schistorchis but are phylogenetically distant from the type-species; a larger number of testes and some other subtle morphological characters in species of Blendiella serve to distinguish the two genera. We report three species of Paraschistorchis Blend, Karar & Dronen, 2017: P. stenosoma (Hanson, 1953) Blend, Karar & Dronen, 2017 (type-species), P. seychellesiensis (Toman, 1989) Blend, Karar & Dronen, 2017, and P. zancli (Hanson, 1953) Blend, Karar & Dronen, 2017. Lobatotrema aniferum, P. stenosoma, and Sch. carneus each have two distinct cox1 populations either over geographical range or in sympatry. Available evidence suggests that most of these species, but not all, are widespread in the tropical Indo-Pacific.


Assuntos
Peixes , Trematódeos , Animais , Filogenia , Especificidade da Espécie , Peixes/genética , DNA Ribossômico/genética
7.
Int J Parasitol ; 53(7): 363-380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075879

RESUMO

Neospirorchis Price, 1934 is a genus of blood flukes that infect the cardiovascular system, including vessels surrounding the nervous systems of marine turtles. Although the genus comprises just two named species, the available molecular data suggest substantial richness which has not yet been formally described. The lack of description of species of Neospirorchis is probably explained by their small, slender, elongate bodies, which allow them to infect numerous organs and vessels in their hosts, such as the heart and peripheral vessels of nervous system, endocrine organs, thymus, mesenteric vessels, and gastrointestinal submucosa. This morphology and site of infection means that collecting good quality, intact specimens is generally difficult, ultimately hampering the formal description of species. Here we supplement limited morphological samples with multi-locus genetic data to formally describe four new species of Neospirorchis infecting marine turtles from Queensland, Australia and Florida, USA; Neospirorchis goodmanorum n. sp. and Neospirorchis deburonae n. sp. are described from Chelonia mydas, Neospirorchis stacyi n. sp. is described from Caretta caretta, and Neospirorchis chapmanae n. sp. from Ch. mydas and Ca. caretta. The four new species are delineated from each other and the two known species based on the arrangement of the male and female reproductive organs, on the basis of cytochrome c oxidase subunit 1 (cox1), internal transcribed spacer 2 (ITS2), and 28S ribosomal DNA (rDNA) molecular data, site of infection, and host species. Molecular evidence for three further putative, presently undescribable, species is also reported. We propose that this integrated characterisation of species of Neospirorchis, based on careful consideration of host, molecular and key morphological data, offers a valuable solution to the slow rate of descriptions for this important genus. We provide the first known life cycle data for Neospirorchis in Australian waters, from Moreton Bay, Queensland; consistent with reports from the Atlantic, sporocysts were collected from a terebellid polychaete and genetically matched to an unnamed species of Neospirorchis infecting Ch. mydas from Queensland and Florida.


Assuntos
Trematódeos , Infecções por Trematódeos , Tartarugas , Animais , Feminino , Masculino , Austrália , Coração , DNA Ribossômico/genética , Filogenia
8.
Int J Parasitol ; 53(1): 13-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328150

RESUMO

The family Aporocotylidae is recognized as having the widest intermediate host usage in the Digenea. Currently, intermediate host groups are clearly correlated with definitive host groups; all known life cycles of marine teleost-infecting aporocotylids involve polychaetes, those of freshwater teleost-infecting aporocotylids involve gastropods, and those of chondrichthyan-infecting aporocotylids involve bivalves. Here we report the life cycle for a marine elopomorph-infecting species, Elopicola bristowi Orélis-Ribeiro & Bullard in Orélis-Ribeiro, Halanych, Dang, Bakenhaster, Arias & Bullard, 2017, as infecting a bivalve, Anadara trapezia (Deshayes) (Arcidae), as the intermediate host in Moreton Bay, Queensland, Australia. The cercaria of E. bristowi has a prominent finfold, distinct anterior and posterior widenings of the oesophagus, a tail with symmetrical furcae with finfolds, and develops in elongate to oval sporocysts. We also report molecular data for an unmatched aporocotylid cercaria from another bivalve, Megapitaria squalida (G. B. Sowerby I) (Veneridae), from the Gulf of California, Mexico, and six unmatched cercariae from a gastropod, Posticobia brazieri (E. A. Smith) (Tateidae), from freshwater systems of south-east Queensland, Australia. Phylogenetic analyses demonstrate the presence of six strongly-supported lineages within the Aporocotylidae, including one of elopomorph-infecting genera, Elopicola Bullard, 2014 and Paracardicoloides Martin, 1974, now shown to use both gastropods and bivalves as intermediate hosts. Of a likely 14 aporocotylid species reported from bivalves, six are now genetically characterised. The cercarial morphology of these six species demonstrates a clear distinction between those that infect chondrichthyans and those that infect elopomorphs; chondrichthyan-infecting aporocotylids have cercariae with asymmetrical furcae that lack finfolds and develop in spherical sporocysts whereas those of elopomorph-infecting aporocotylids have symmetrical furcae with finfolds and develop in elongate sporocysts. This morphological correlation allows predictions of the host-based lineage to which the unsequenced species belong. The Aporocotylidae is proving exceptional in is propensity for major switches in intermediate host use, with the most parsimonious interpretation of intermediate host distribution implying a minimum of three host switches within the family.


Assuntos
Bivalves , Gastrópodes , Esquistossomose , Trematódeos , Infecções por Trematódeos , Animais , Infecções por Trematódeos/veterinária , Filogenia , Estágios do Ciclo de Vida , Oocistos
9.
Parasitol Int ; 93: 102710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36423873

RESUMO

A new genus, Doorochen n. gen., is erected for four species of Postlepidapedon Zdzitowiecki, 1993, all of which inhabit members of the labroid genus Choerodon Bleeker, the tuskfishes, and which molecular phylogenies have indicated are not congeneric with the type-species, P. opisthobifurcatum (Zdzitowiecki, 1990) Zdzitowiecki, 1993. Doorochen secundum (Durio & Manter, 1968) n. comb. from Choerodon graphicus (De Vis), the Graphic tuskfish, from the Great Barrier Reef (GBR) and New Caledonia is designated the type-species of the new genus. Other species recognised are Doorochen spissum (Bray, Cribb & Barker, 1997) n. comb. from C. venustus (De Vis), the Venus tuskfish, C. cyanodus (Richardson), the Blue tuskfish, and C. graphicus from the GBR; D. uberis (Bray, Cribb & Barker, 1997) n. comb. from C. schoenleinii (Valenciennes), the Blackspot tuskfish, and C. venustus from the GBR and Moreton Bay; and D. philippinense (Machida, 2004) n. comb. from C. anchorago (Bloch), the Orange-dotted tuskfish, from Philippine waters. In addition to these four species, two new species are described: D. zdzitowieckii n. sp. from C. fasciatus (Günther), the Harlequin tuskfish, and C. graphicus from the GBR; and D. goorchana n. sp. from C. anchorago from the GBR and Palau. The genus Postlepidapedon is now considered to comprise just two species, P. opisthobifurcatum and P. quintum Bray & Cribb, 2001. The relationships of Doorochen, Postlepidapedon, Myzoxenus Manter, 1934 and Intusatrium Durio & Manter, 1968 in the family Lepidapedidae Yamaguti, 1958 are discussed.


Assuntos
Bivalves , Perciformes , Trematódeos , Animais , Trematódeos/genética , Filogenia , Nova Caledônia
10.
Zootaxa ; 5154(3): 271-288, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36095622

RESUMO

Species of the digenean genus Enenterum Linton, 1910 (Lepocreadioidea: Enenteridae) are characterised primarily by their elaborate oral suckers, which are divided into varying numbers of anteriorly directed lobes, and their host-restriction to herbivorous marine fishes of the family Kyphosidae. We describe Enenterum petrae n. sp. from the brassy chub Kyphosus vaigiensis (Quoy Gaimard) collected off Lizard Island, Great Barrier Reef, Queensland, Australia. Enenterum petrae n. sp. is readily differentiated from congeners by its unique oral sucker morphology, in having a minute pharynx, and the combination of a genital cap and accessory sucker. We also provide the first record of Enenterum kyphosi Yamaguti, 1970 from Australia based on material obtained from the blue sea chub Kyphosus cinerascens (Forsskl) collected off Lizard Island and North Stradbroke Island, Queensland. Morphologically, our specimens of E. kyphosi agree closely with descriptions of this species from Hawaii and South Africa, and despite lack of molecular data from outside of Australian waters, we consider all three reports to represent a single, widespread species. The first ITS2 and COI mtDNA gene sequences for species of Enenterum are provided and molecular phylogenetic analyses of 28S rDNA gene sequences place these species in a strongly-supported clade with the type-species of the genus, Enenterum aureum Linton, 1910. The oral suckers of both E. kyphosi and E. petrae n. sp. can be interpreted as having varying numbers of lobes depending on the particular specimen and how the division between lobes is defined. Scanning electron microscopical images improves understanding of the morphology of the enenterid oral sucker, and permits speculation regarding the evolutionary history leading to its specialisation in this lineage.


Assuntos
Cifose , Lagartos , Perciformes , Trematódeos , Animais , Austrália , Peixes , Filogenia , Especificidade da Espécie
11.
Syst Parasitol ; 99(4): 403-417, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35553302

RESUMO

A new cryptogonimid trematode, Siphoderina hustoni n. sp., is reported, collected off Lizard Island, Queensland, Australia, from the Maori snapper Lutjanus rivulatus (Cuvier). The new species is moderately distinctive within the genus. It is larger and more elongate than most other species of Siphoderina Manter, 1934, has the shortest forebody of any, a relatively large ventral sucker, a long post-testicular zone, and is perhaps most recognisable for the substantial space in the midbody between the ventral sucker and ovary devoid of uterine coils and vitelline follicles, the former being restricted to largely posterior to the ovary and the latter distributed from the level of the anterior testis to the level of the ovary. In phylogenetic analyses of 28S ribosomal DNA, the new species resolved with the other nine species of Siphoderina for which sequence data are available, all of which are from Queensland waters and from lutjanid and haemulid fishes. Molecular barcode data were also generated, for the ITS2 ribosomal DNA and cox1 mitochondrial DNA markers. The new species is the first cryptogonimid known from L. rivulatus and the first metazoan parasite reported from that fish in Australian waters.


Assuntos
Doenças dos Peixes , Trematódeos , Infecções por Trematódeos , Animais , Austrália , DNA Ribossômico/genética , Feminino , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Humanos , Masculino , Havaiano Nativo ou Outro Ilhéu do Pacífico , Filogenia , Especificidade da Espécie , Trematódeos/genética , Infecções por Trematódeos/parasitologia
12.
Syst Parasitol ; 99(3): 375-397, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394638

RESUMO

A new species of lepocreadiid, Opechonoides opisthoporus n. sp., is described infecting 12 pomacentrid fish species from the Great Barrier Reef, Australia, with Abudefduf whitleyi Allen & Robertson as the type-host. This taxon differs from the only other known member of the genus, Opechonoides gure Yamaguti, 1940, in the sucker width ratio, cirrus-sac length, position of the testes, position of the pore of Laurer's canal, and relative post-testicular distance. The new species exhibits stenoxenic host-specificity, infecting pomacentrids from seven genera: Abudefduf Forsskål, Amphiprion Bloch & Schneider, Neoglyphidodon Allen, Neopomacentrus Allen, Plectroglyphidodon Fowler & Ball, Pomacentrus Lacépède and Stegastes Jenyns. Phylogenetic analyses of 28S rDNA sequence data demonstrate that O. opisthoporus n. sp. forms a strongly supported clade with Prodistomum orientale (Layman, 1930) Bray & Gibson, 1990. The life cycle of this new species is partly elucidated on the basis of ITS2 rDNA sequence data; intermediate hosts are shown to be three species of Ctenophora. New host records and molecular data are reported for Lepocreadium oyabitcha Machida, 1984 and Lepotrema amblyglyphidodonis Bray, Cutmore & Cribb, 2018, and new molecular data are provided for Lepotrema acanthochromidis Bray, Cutmore & Cribb, 2018 and Lepotrema adlardi (Bray, Cribb & Barker, 1993) Bray & Cribb, 1996. Novel cox1 mtDNA sequence data showed intraspecific geographical structuring between Heron Island and Lizard Island for L. acanthochromidis but not for L. adlardi or O. opisthoporus n. sp.


Assuntos
Gastrópodes , Perciformes , Trematódeos , Infecções por Trematódeos , Animais , Austrália , DNA Ribossômico/genética , Peixes/genética , Estágios do Ciclo de Vida , Filogenia , Especificidade da Espécie , Trematódeos/genética
13.
Syst Parasitol ; 99(4): 447-466, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35461430

RESUMO

Plesiochorus Looss, 1901 is a genus of Gorgoderidae infecting the urinary bladders of marine turtles globally. Currently, just two morphologically similar species are recognised, Plesiochorus cymbiformis (Rudolphi, 1819) Looss, 1901 and Plesiochorus elongatus Pigulevsky, 1953, which have been distinguished by molecular data and subtle morphological differences. Here we describe a new species, Plesiochorus irwinorum n. sp., infecting hawksbill turtles (Eretmochelys imbricata (L.)), which is primarily distinguished from the other two species of Plesiochorus on the basis of ITS2, cox1 and 28S sequence data. Morphometric data for specimens examined during this study overlap between P. cymbiformis and P. irwinorum n. sp. for every measured feature, rendering them functionally cryptic. However, principal components analysis clearly distinguishes the two species. Additionally, we report new specimens of P. cymbiformis, and provide new sequence data for specimens from Australian loggerhead (Caretta caretta (L.)) and hawksbill turtles. There is little understanding of the host-specificity or geographical distribution of the three species of Plesiochorus, and it remains possible that some of the previously reported sequences have been attributed to the wrong species.


Assuntos
Trematódeos , Tartarugas , Animais , Austrália , Especificidade da Espécie , Trematódeos/genética , Bexiga Urinária
14.
Parasitology ; : 1-23, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35357289

RESUMO

The taxonomy of species of Bivesicula Yamaguti, 1934 is analysed for samples from holocentrid, muraenid and serranid fishes from Japan, Ningaloo Reef (Western Australia), the Great Barrier Reef (Queensland), New Caledonia and French Polynesia. Analysis of three genetic markers (cox1 mtDNA, ITS2 and 28S rDNA) identifies three strongly supported clades of species and suggests that Bivesicula as presently recognized is not monophyletic. On the basis of combined morphological, molecular and biological data, 10 species are distinguished of which five are proposed as new. Bivesicula Clade 1 comprises seven species of which three are effectively morphologically cryptic relative to each other; all seven infect serranids and four also infect holocentrids. Bivesicula Clade 2 comprises three species of which two are effectively morphologically cryptic relative to each other; all three infect serranids and one also infects a muraenid. Bivesicula Clade 3 comprises two known species from apogonids and a pomacentrid, and forms a clade with species of Paucivitellosus Coil, Reid & Kuntz, 1965 to the exclusion of other Bivesicula species. Taxonomy in this genus is made challenging by the combination of low resolving power of ribosomal markers, the existence of regional cox1 mtDNA populations, exceptional and unpredictable host-specificity and geographical distribution, and significant host-induced morphological variation.

15.
Int J Parasitol ; 52(7): 407-425, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35292255

RESUMO

The first first-intermediate host for a species of Didymozoidae (Trematoda: Hemiuroidea), a bivalve of the family Arcidae, is identified using multi-loci molecular data. First intermediate, (likely) third intermediate, and adult stages of a new didymozoid taxon (Saccularina magnacetabula n. gen. n. sp.) from Moreton Bay, Queensland, Australia were collected from the Sydney cockle Anadara trapezia (Deshayes) (Arcoidea: Arcidae), Sillago sp. (Sillaginidae) and Elops hawaiensis Regan (Elopiformes: Elopidae), respectively, and genetically matched. Infections in A. trapezia were present as sporocysts and cystophorous cercariae, and infected tissue at the base of the gills. Morphologically, S. magnacetabula is distinctive relative to all other didymozoids in the combination of hermaphroditism, mate-pairing, filiform body shape, the presence of a ventral sucker, a single testis, and a saccular excretory vesicle at the posterior extremity. Molecular sequence data were generated for S. magnacetabula and 42 other putative didymozoid species to explore relationships within the Didymozoidae and Hemiuroidea. In molecular phylogenetic analyses of the 28S rDNA region, the new genus forms a clade with an undescribed taxon from the redthroat emperor, Lethrinus miniatus (Bloch & Schneider) (Perciformes: Lethrinidae), from the Great Barrier Reef, and another uncharacterised taxon from E. hawaiensis. This clade is sister to a moderately well-supported clade comprising all other didymozoid species for which sequences are available, including representatives of five of the six presently recognised subfamilies. The infection of a bivalve by a didymozoid is discussed in the context of the overwhelming use of gastropod molluscs as first intermediate hosts by the Hemiuroidea.


Assuntos
Bivalves , Doenças dos Peixes , Perciformes , Trematódeos , Infecções por Trematódeos , Animais , Bivalves/genética , Peixes , Estágios do Ciclo de Vida , Masculino , Filogenia , RNA Ribossômico 28S/genética
16.
Parasitol Int ; 89: 102566, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35248764

RESUMO

We report four new species of monorchiids infecting teleost fishes from Australian waters. Two new species of Paralasiotocus Wee, Cutmore, Pérez-del-Olmo & Cribb, 2020, Pa. abstrusus n. sp. and Pa. tectus n. sp., are described from haemulids of the Great Barrier Reef. The two species are morphologically cryptic and occur in sympatry but differ significantly in cox1 mtDNA and ITS2 rDNA sequence data. Paralasiotocus tectus n. sp. is found only in Plectorhinchus albovittatus (Rüppell) whereas Pa. abstrusus n. sp. infects Pl. albovittatus, Plectorhinchus flavomaculatus (Cuvier) and Plectorhinchus lineatus (Linnaeus). The two species differ from all known species of Paralasiotocus in the possession of a clear gap in the spines of the terminal organ. A new species is described from a mullid, Parupeneus spilurus (Bleeker), from off Heron Island and Moreton Bay. The new species is morphologically broadly consistent with the concept of Paralasiotocus in the possession of an unspined genital atrium, bipartite terminal organ, and lobed ovary. However, it possesses a highly lobed cirrus and is phylogenetically widely separated from the two species of Paralasiotocus characterized here, and thus we propose Lobucirruatus infloresco n. g., n. sp. Proctotrema prominens n. sp., is described from Pl. albovittatus. It is differentiated from all other species of Proctotrema in the combination of a prominent metraterm, slightly fusiform body, slightly funnel-shaped oral sucker, elongate cirrus-sac, unlobed ovary, and caeca that terminate in the post-testicular region.


Assuntos
Gastrópodes , Trematódeos , Animais , Austrália , Baías , Feminino , Peixes , Filogenia , Especificidade da Espécie
17.
Int J Parasitol Parasites Wildl ; 17: 161-165, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35116223

RESUMO

We genetically characterised larval and adult specimens of species of Echinocephalus Molin, 1858 (Gnathostomatidae) collected from various hosts found within Australian waters. Adult specimens of Echinocephalus were collected from a dasyatid stingray [Pastinachus ater (Macleay); n = 2] from Moreton Bay, Queensland and larvae from a hydrophiine sea snake [Hydrophis peronii (Duméril); n = 3] from Cape York Peninsula, Queensland, from an octopus (Octopus djinda Amor & Hart; n = 3) from Fremantle, Western Australia and from a lucinid bivalve [Codakia paytenorum (Iredale); n = 5] from Heron Island, Queensland Australia. All nematode samples were identified morphologically and genetically characterised using the small subunit nuclear ribosomal DNA (SSU). Some morphological differences were identified between previous studies of Echinocephalus spp. and those observed herein but the significance of these differences remains unresolved. Molecular phylogenetic analyses revealed that larval Echinocephalus sp. from H. peronii and C. paytenorum in Australia were very similar (with strong nodal support) to larval Echinocephalus sp. infecting two fish species from Egypt, Saurida undosquamis (Richardson) (Synodontidae) and Pagrus pagrus (Linnaeus) (Sparidae). The SSU sequences of larval Echinocephalus sp. from O. djinda and adults from P. ater formed a well-supported clade with that of adult E. overstreeti Deardorff and Ko, 1983 from the Port Jackson shark, Heterodontus portusjacksoni (Meyer), as well as that of the larval Echinocephalus sp., from the common carp (Cyprinus carpio Linnaeus) from Egypt. This study extends the intermediate host range of Echinocephalus larvae by including a sea snake for the first time. Findings of this study highlight the importance of genetic characterisation of larval and adult specimens of Echinocephalus spp. to resolve the current difficulties in the taxonomy of this genus.

18.
Parasitology ; : 1-18, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35225757

RESUMO

We report specimens of monorchiids infecting Haemulidae from the waters off Japan and Australia; these specimens represent five species of Helicometroides Yamaguti, 1934, three of which are unambiguously new. Helicometroides murakamii n. sp. infects Diagramma pictum pictum from off Minabe, Japan; Helicometroides gabrieli n. sp. infects Plectorhinchus chrysotaenia from off Lizard Island, Australia; and Helicometroides wardae n. sp. infects Plectorhinchus flavomaculatus and Plectorhinchus multivittatus from off Heron Island, Australia. Helicometroides murakamii n. sp. and H. gabrieli n. sp. conform to the most recent diagnosis of Helicometroides in lacking a terminal organ, but H. wardae n. sp. possesses a terminal organ with distinct, robust spines; despite this morphological distinction, the three form a strongly-supported clade in phylogenetic analyses. We also report specimens morphologically consistent with Helicometroides longicollis Yamaguti, 1934, from D. pictum pictum from off Minabe, Japan, and Diagramma pictum labiosum on the Great Barrier Reef, Australia. Genetic analyses of ITS2 rDNA, 28S rDNA and cox1 mtDNA sequence data for the Japanese specimens reveal the presence of two distinct genotypes. Specimens of the two genotypes were discovered in mixed infections and are morphologically indistinguishable; neither genotype can be associated definitively with H. longicollis as originally described. We thus identify them as H. longicollis lineage 1 and 2, pending study of further fresh material. Genetic analyses of specimens from the Great Barrier Reef are consistent with the presence of only H. longicollis lineage 1. This species thus has a range that incorporates at least Australia and Japan, localities separated by over 7000 km.

19.
Syst Parasitol ; 99(2): 241-251, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35089482

RESUMO

We report on Neoechinorhynchus aldrichettae Edmonds, 1971 (Acanthocephala: Neoechinorhynchidae), obtained from yellow-eye mullet Aldrichetta forsteri (Valenciennes) (Mugiliformes: Mugilidae) from the Huon River, Tasmania, Australia. We provide new 18S and 28S rDNA gene sequence data for N. aldrichettae, assess its phylogenetic position relative to other species of Neoechinorhynchus and provide an updated morphological account of this species including detail of features omitted in the type-description, specifically of the apical organ, a collar at the base of the neck and a para-receptacle structure associated with the proboscis receptacle. We determine that eggs in this species are ovoid, without polar prolongations of fertilisation membrane, which permits assignment of N. aldrichettae to the subgenus Neoechinorhynchus. Our phylogenetic analyses place N. (N.) aldrichettae in a clade with other species of Neoechinorhynchus which parasitise mullets in marine and estuarine waters. We find that, in terms of monophyletic clades, the current subgeneric classification system for Neoechinorhynchus is not reflected in our phylogenetic analyses.


Assuntos
Acantocéfalos , Doenças dos Peixes , Helmintíase Animal , Smegmamorpha , Animais , Austrália , Filogenia , Especificidade da Espécie , Tasmânia
20.
Int J Parasitol ; 52(4): 225-241, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34742720

RESUMO

Blood flukes of the family Spirorchiidae Stunkard, 1921 are significant pathogens of marine turtles, both in the wild and in captivity. Despite causing considerable disease and mortality, little is known about the life cycles of marine species, with just four reports globally. No complete life cycle has been elucidated for any named species of marine spirorchiid, but the group is reported to use vermetid and fissurellid gastropods, and terebelliform polychaetes as intermediate hosts. Here we report molecular evidence that nine related spirorchiid species infect vermetid gastropods as first intermediate hosts from four localities along the coast of Queensland, Australia. ITS2 rDNA and cox1 mtDNA sequence data generated from vermetid infections provides the first definitive identifications for the intermediate hosts for the four species of Hapalotrema Looss, 1899 and Learedius learedi Price, 1934. Additionally, we provide a new locality report for larval stages of Amphiorchis sp., and evidence of three additional unidentified spirorchiid species in Australian waters. Based on the wealth of infections from vermetids during this study, we conclude that the previous preliminary report of a fissurellid limpet as the intermediate host for L. learedi was likely mistaken. The nine species found infecting vermetids during this study form a strongly supported clade exclusive of species of the other two marine spirorchiid genera for which sequence data are available; Carettacola Manter & Larson, 1950 which falls sister to the vermetid-infecting clade + a small clade of freshwater spirorchiids, and Neospirorchis Price, 1934 which is distantly related to the vermetid-infecting clade. We provide further evidence that spirorchiid transmission can occur in closed system aquaria and show that spirorchiid transmission occurs at both an important turtle rookery (Heron Island, southern Great Barrier Reef, Australia) and foraging ground (Moreton Bay, Australia). We discuss the implications of our findings for the epidemiology of the disease, control in captivity, and the evolution of vermetid exploitation by the Spirorchiidae.


Assuntos
Gastrópodes , Trematódeos , Infecções por Trematódeos , Tartarugas , Animais , Austrália , Estágios do Ciclo de Vida , Filogenia , Trematódeos/genética , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...